Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(5): 718-739, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38103545

RESUMO

Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.


Assuntos
Encéfalo , Neurônios , Neurônios/metabolismo , Encéfalo/metabolismo , Fotometria/métodos , Cálcio/metabolismo
2.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090565

RESUMO

In some individuals, drug-associated cues subsume potent control of behavior, such as the elicitation of drug craving1-3 and automatized drug use4. The intensity of this cue reactivity is highly predictive of relapse and other clinical outcomes in substance use disorders5,6. It has been postulated that this cue reactivity is driven by augmentation of dopamine release over the course of chronic drug use7. Here we carried out longitudinal recording and manipulation of cue-evoked dopamine signaling across phases of substance-use related behavior in rats. We observed a subset of individuals that exhibited increased cue reactivity and escalated drug consumption, two cardinal features of substance use disorders. In these individuals, cue-evoked phasic dopamine release underwent diametrically opposed changes in amplitude, determined by the context in which the cue is presented. Dopamine evoked by non-contingent cue presentation increased over drug use, producing greater cue reactivity; whereas dopamine evoked by contingent cue presentation decreased over drug use, producing escalation of drug consumption. Therefore, despite being in opposite directions, these dopamine trajectories each promote core symptoms of substance use disorders.

3.
Nat Commun ; 10(1): 336, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659189

RESUMO

To date, the spatiotemporal release of specific neurotransmitters at physiological levels in the human brain cannot be detected. Here, we present a method that relates minute-by-minute fluctuations of the positron emission tomography (PET) radioligand [11C]raclopride directly to subsecond dopamine release events. We show theoretically that synaptic dopamine release induces low frequency temporal variations of extrasynaptic extracellular dopamine levels, at time scales of one minute, that can evoke detectable temporal variations in the [11C]raclopride signal. Hence, dopaminergic activity can be monitored via temporal fluctuations in the [11C]raclopride PET signal. We validate this theory using fast-scan cyclic voltammetry and [11C]raclopride PET in mice during chemogenetic activation of dopaminergic neurons. We then apply the method to data from human subjects given a palatable milkshake and discover immediate and-for the first time-delayed food-induced dopamine release. This method enables time-dependent regional monitoring of stimulus-evoked dopamine release at physiological levels.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Racloprida/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/cirurgia , Ingestão de Alimentos , Estimulação Elétrica , Eletrodos , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Tomografia por Emissão de Pósitrons/métodos , Ensaio Radioligante , Lobo Temporal/metabolismo , Lobo Temporal/cirurgia , Fatores de Tempo
4.
Nat Commun ; 8(1): 743, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963507

RESUMO

Inactivation of opioid receptors limits the therapeutic efficacy of morphine-like analgesics and mediates the long duration of kappa opioid antidepressants by an uncharacterized, arrestin-independent mechanism. Here we use an iterative, discovery-based proteomic approach to show that following opioid administration, peroxiredoxin 6 (PRDX6) is recruited to the opioid receptor complex by c-Jun N-terminal kinase (JNK) phosphorylation. PRDX6 activation generates reactive oxygen species via NADPH oxidase, reducing the palmitoylation of receptor-associated Gαi in a JNK-dependent manner. Selective inhibition of PRDX6 blocks Gαi depalmitoylation, prevents the enhanced receptor G-protein association and blocks acute analgesic tolerance to morphine and kappa opioid receptor inactivation in vivo. Opioid stimulation of JNK also inactivates dopamine D2 receptors in a PRDX6-dependent manner. We show that the loss of this lipid modification distorts the receptor G-protein association, thereby preventing agonist-induced guanine nucleotide exchange. These findings establish JNK-dependent PRDX6 recruitment and oxidation-induced Gαi depalmitoylation as an additional mechanism of Gαi-G-protein-coupled receptor inactivation.Opioid receptors are important modulators of nociceptive pain. Here the authors show that opioid receptor activation recruits peroxiredoxin 6 (PRDX6) to the receptor-Gαi complex by c-Jun N-terminal kinase, resulting in Gαi depalmitoylation and enhanced receptor-Gαi association.


Assuntos
Analgésicos Opioides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Peroxirredoxina VI/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Benzenoacetamidas/farmacologia , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Fentanila/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Morfina/farmacologia , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Peroxirredoxina VI/metabolismo , Fosforilação , Pirrolidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo
5.
Neuropharmacology ; 114: 77-87, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889491

RESUMO

Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release.


Assuntos
Benzotiazóis/administração & dosagem , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Dopamina/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D2/agonistas , Assunção de Riscos , Animais , Núcleo Caudado/metabolismo , Dopamina/metabolismo , Masculino , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Doença de Parkinson/complicações , Pramipexol , Córtex Pré-Frontal/metabolismo , Probabilidade , Putamen/metabolismo , Ratos , Ratos Long-Evans , Serotonina/metabolismo
6.
Cell Rep ; 16(2): 304-313, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346361

RESUMO

Nearly all animals engage in a complex assortment of social behaviors that are essential for the survival of the species. In mammals, these behaviors are regulated by sub-nuclei within the hypothalamus, but the specific cell types within these nuclei responsible for coordinating behavior in distinct contexts are only beginning to be resolved. Here, we identify a population of neurons in the ventral premammillary nucleus of the hypothalamus (PMV) that are strongly activated in male intruder mice in response to a larger resident male but that are not responsive to females. Using a combination of molecular and genetic approaches, we demonstrate that these PMV neurons regulate intruder-specific male social behavior and social novelty recognition in a manner dependent on synaptic release of the excitatory neurotransmitter glutamate. These data provide direct evidence for a unique population of neurons that regulate social behaviors in specific contexts.


Assuntos
Comportamento Competitivo , Hipotálamo Posterior/citologia , Neurônios/fisiologia , Animais , Comportamento Animal , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos
7.
Nat Neurosci ; 18(10): 1405-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26404715

RESUMO

Exposure to stress has profound, but complex, actions on motivated behavior and decision-making. These effects are central to core symptoms of a number of psychiatric disorders that are precipitated or augmented by stress, such as depressive disorders and substance use disorders. Studying the neural substrates of stress's effects on motivation has revealed that stress affects multiple targets on circuits throughout the brain using diverse molecular signaling processes. Moreover, stress does not have unitary effects on motivated behavior, but differences in the intensity, duration, intermittency, controllability and nature of the stressor produce qualitatively and quantitatively different behavioral endpoints. Unsurprisingly, the results of neuroscientific investigations into stress and motivation often open more questions than they resolve. Here we discuss contemporary results pertaining to the neural mechanisms by which stress alters motivation, identify points of contention and highlight integrative areas for continuing research into these multifaceted complexities.


Assuntos
Encéfalo/fisiopatologia , Tomada de Decisões/fisiologia , Motivação/fisiologia , Estresse Psicológico/psicologia , Animais , Humanos , Estresse Psicológico/fisiopatologia
8.
Nat Neurosci ; 17(5): 704-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705184

RESUMO

Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured striatal dopamine release during a cocaine self-administration regimen that produced escalation of drug taking in rats. Surprisingly, we found that phasic dopamine decreased in both regions as the rate of cocaine intake increased, with the decrement in dopamine in the VMS significantly correlated with the rate of escalation. Administration of the dopamine precursor L-DOPA at a dose that replenished dopamine signaling in the VMS reversed escalation, thereby demonstrating a causal relationship between diminished dopamine transmission and excessive drug use. Together these data provide mechanistic and therapeutic insight into the excessive drug intake that emerges following protracted use.


Assuntos
Cocaína/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Dopaminérgicos/farmacologia , Esquema de Medicação , Técnicas Eletroquímicas , Modelos Lineares , Masculino , Ratos , Ratos Wistar , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 109(50): 20703-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184975

RESUMO

Drug addiction is a neuropsychiatric disorder that marks the end stage of a progression beginning with recreational drug taking but culminating in habitual and compulsive drug use. This progression is considered to reflect transitions among multiple neural loci. Dopamine neurotransmission in the ventromedial striatum (VMS) is pivotal in the control of initial drug use, but emerging evidence indicates that once drug use is well established, its control is dominated by the dorsolateral striatum (DLS). In the current work, we conducted longitudinal neurochemical recordings to ascertain the spatiotemporal profile of striatal dopamine release and to investigate how it changes during the period from initial to established drug use. Dopamine release was detected using fast-scan cyclic voltammetry simultaneously in the VMS and DLS of rats bearing indwelling i.v. catheters over the course of 3 wk of cocaine self-administration. We found that phasic dopamine release in DLS emerged progressively during drug taking over the course of weeks, a period during which VMS dopamine signaling declined. This emergent dopamine signaling in the DLS mediated discriminated behavior to obtain drug but did not promote escalated or compulsive drug use. We also demonstrate that this recruitment of dopamine signaling in the DLS is dependent on antecedent activity in VMS circuitry. Thus, the current findings identify a striatal hierarchy that is instantiated during the expression of established responses to obtain cocaine.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Corpo Estriado/fisiopatologia , Dopamina/fisiologia , Animais , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/etiologia , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Ratos , Ratos Wistar , Receptores Dopaminérgicos/fisiologia , Autoadministração , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...